
Modeling and Roadmap Generation for Truss Inspection by Small UAS

Arun Das1 and Craig Woolsey2

Abstract— Small unmanned aircraft systems (UAS) can in-
crease efficiency and reduce risk to humans during the in-
spection of truss-supported structures such as steel bridges.
This paper describes a method to mathematically represent a
truss and subsequently to plan an efficient, collision-free path
from a given starting position to a given goal. The algorithm
generates a deterministic roadmap which connects nodes that
are generated near the joints of the structure. This roadmap
is then searched for the path using a lazy A∗ algorithm.
Simulation results show the functionality of the algorithm.
Comparison with a probabilistic roadmap method indicates the
proposed algorithm’s efficiency.

I. INTRODUCTION

With continuous improvements in performance, payload

capacity, and reliability, multicopters have become helpful

tools for aerial mapping, event monitoring, and infrastructure

inspection. Concerning inspection, multicopters have been

used or proposed to image railways, pipelines and power-

lines, tunnels, buildings and a variety of other infrastructural

assets. Here we focus on the inspection of bridges, which are

an especially important subset of the public infrastructure.

Many existing bridges are supported by trusses, typically

built of steel because of its strength and resilience. In the

United States, bridges must be inspected every two years

and the large number of welded and bolted connections

between beams, girders, and other elements make this task

time-consuming and costly, because of both direct labor

costs and indirect costs due to traffic disruptions. Moreover,

bridge inspection is inherently dangerous, providing further

motivation for robotic inspection.

Various concepts have been proposed for robotic inspec-

tion of steel bridges. These include walking [6], climbing,

and driving robots [7], [9] that use magnets to adhere to the

structure. These systems can have difficulty, however, negoti-

ating the corners, gusset plates, and other structural elements

that are peculiar to a truss. We consider the use of a small

unmanned aircraft system (UAS) to inspect truss-supported

structures, such as steel bridges, by flying within the structure

and collecting images of user-specified elements. In this

paper, we develop an algorithm to plan a collision-free path

through a truss structure from a given start point to a desired

end point. The algorithm generates a roadmap which includes

the start and end point as well as a collection of “navigation

points” which form the basis for path planning. Although

the path planner incorporates constraints and uncertainties

1Arun Das is with the Faculty of Electrical Engineering, Technical
University Munich, 80333 Munich, Germany a.das@tum.de

2Craig Woolsey is a Professor in Virginia Tech’s Crofton Depart-
ment of Aerospace and Ocean Engineering, Blacksburg, VA 24061, USA
cwoolsey@vt.edu

associated with operating a multicopter near a truss structure,

the aircraft dynamics are not explicitly considered.

A great variety of path planning algorithms exists [10].

Here, we briefly mention some popular approaches. Rapidly-

exploring random trees (RRTs) are often used to quickly

generate feasible paths, but RRTs do not produce optimal

solutions. Probabilistic roadmap (PRM) approaches are res-

olution optimal, but a roadmap with a large number of nodes

generally results in large computation times. Both approaches

– the RRT and the PRM – have difficulty finding paths

through narrow passages, which is problematic for operation

in the confined space within a truss. By maximizing the

distance to obstacles, planning methods based on Voronoi

graphs emphasize path safety over path length. Potential

field methods are another alternative, but they are com-

putationally expensive. For two-dimensional environments,

visibility graphs efficiently produce shortest paths by limiting

the number of nodes in the graph. Visibility graphs are also

effective at dealing with narrow passages. However, visibility

graphs cannot be easily extended to three dimensions.

(a) RRT (b) PRM (c) Visibility Graph

Fig. 1: Path planning methods in 2-dimensional environments

with polygonal obstacles. Resulting paths in red.

The proposed algorithm is based on a new method of rep-

resenting the structure of steel bridges. For this representation

all parts of the bridge are enclosed by cuboids and a small set

of parameters is provided as input for the algorithm. These

input parameters are then used by the algorithm to construct a

representation of the structure. Then a deterministic roadmap

is generated by computing Navigation Points (NPs) around

the joints of the structure. The setting of NPs is similar

to visibility graph approaches. The NPs can be used as

waypoints along the path to find a feasible path from start

to goal. The roadmap is searched for the path with a ’lazy’

version of the A∗ graph search algorithm.

In Section II, the representation of steel bridges is de-

scribed and the computation of the structure is shown. Af-

terwards, Section III describes the path planning algorithm.

Simulation results are provided in Section IV, followed by

a conclusion in Section V.



II. REPRESENTATION OF TRUSSES

In this section, a method is introduced to mathematically

represent a truss structure. The method enables one to

efficiently compute occupied and free regions within the

environment from a small set of parameters that contain all

the relevant information about the structure.

As a motivating example for truss inspection, a steel bridge

is constructed from many different parts including beams,

braces, girders, stiffeners, pillars, cables, sway bars, etc.

For the purpose of modeling for path planning, every such

element is enclosed by a cuboid. Multiple elements that

are densely packed within a volume may also be grouped

together and enclosed in a single cuboid. It is not necessary to

distinguish the individual properties of different components;

we treat the cuboids as standardized objects that represent

obstructions within the work space. We refer to these cuboids

as beams and we call the junctions where beams connect

joints. While a given cuboid will often enclose a true beam

within the structure, it might also enclose some other element

such as a cable or walkway.

A. Coordinate Frames

To model the truss structure, we define two types of

reference frames: a single, arbitrary world frame, labeled

with the subscript 0, and a beam frame, denoted by the

subscript b, for each beam in the structure. The beam frames

are needed to parameterize the truss structure in order to

compute paths. The origin Ob is located at one of a given

beam’s joints, denoted the “start joint”, and the z-axis of

the frame points to the other joint, the “end joint”. This

definition is illustrated in Fig. (1), where pstart and pend define

the position of the beam’s start and end joint, respectively.

The x-axis is defined by taking the cross product of the unit

vectors defining the z-axis of the world frame and the z-axis

of the beam frame, according to (2). If this cross product

is zero, then xb = y0. In order to obtain a right-handed

coordinate system, yb is given as in (3).

ẑb = (pend − pstart)/‖pend − pstart‖ (1)

x̂b =

{
(z0 × zb)/‖z0 × zb‖ if z0 × zb �= 0
y0 otherwise

(2)

ŷb = (zb × xb)/‖zb × xb‖ (3)

B. Input Parameters

The positions of joints and parameters of beams must be

provided as input to the structure-modeling algorithm. The

joints are defined by their Cartesian coordinates given in

the world frame. Each beam is a simple cuboid defined by

six parameters: the start joint nstart and end joint nend, the

cross-sectional dimensions xsize and ysize, and an offset given

by xoffset and yoffset.

The cross-sectional dimensions xsize and ysize must be

greater than zero. The offset allows for cases where the

centerline of a beam does not pass through the start and

end joint.

Beyond the geometric parameters introduced above, we

define a binary classification of joints and beams as either

Fig. 2: A beam with corresponding parameters and vertices.

active or inactive, depending on whether paths around the

component are allowed. Inactive joints and beams may cor-

respond, for example, to structural elements at the boundaries

of the inspection area for which no inspection data are

required. Inactive components are not considered by the

algorithm when generating the roadmap, reducing its size

and saving computation time.

C. Defining the Structure from Input Parameters

With the given input parameters, the algorithm is computes

eight vertices vi for i ∈ {1, 2, . . . , 8} for each beam with

respect to the beam frame. Fig. 2 shows a beam with its

beam frame, parameters, and vertices. The coordinates of

the first vertex with respect to the beam frame are

v1 =

⎛
⎝ −xsize

2 + xoffset
ysize

2 + yoffset

0

⎞
⎠ (4)

The remaining three vertices adjacent to the beam’s starting

joint are computed analogously to the first. The vertices

adjacent to the beam’s end point (on the right side in Fig. 2)

are computed similarly, but have the z-value ‖pend − pstart‖.

After computing the vertices with respect to the beam

frame, each vertex vi is transformed into the world frame

by applying the homogeneous transformation

0Tb(vi) =

⎡
⎣ x̂b ŷb ẑb

⎤
⎦vi + pstart

Given the computed vertices, an object for each beam is

created in the world frame and the structure is obtained by

aggregating all beams.

D. Inflating the Structure

A UAS is exposed to a wide variety of external effects

while flying. These range from uncertainties in position

estimation to wind impacts and turbulence near the bridge

structure. To limit the risk of collisions the UAS has to

maintain a certain distance dbuffer to the structure. The

chosen distance dbuffer depends on wind strength, controller

capabilities and the disposition of taking risk, just to name

some criteria. Further, the algorithm assumes the UAS to

be a point. To account for the physical dimensions of the

UAS, the point must maintain an additional distance from

the structure, at least half the diameter dUAS of the smallest

sphere that can enclose the vehicle.

To guarantee that the planned path always keeps the

required distance to the structure, the algorithm inflates the

structure [2] in every dimension by the inflation size dinflation.



This procedure is also known as dilation [4] or growing the
obstacles [8]. The inflation size dinflation is

dinflation = dbuffer +
dUAS

2
(5)

Inflation is usually done by building the Minkowski sum

[3] of the obstacles with a sphere with radius dinflation. In

this approach, inflation transforms a cuboid obstacle into a

sphere, which is not especially useful in the given applica-

tion. In our algorithm, to maintain a cuboid representation

of obstacles, we adopt an alternative inflation approach

which is also more computationally efficient. We increase

the dimensions of every beam:

xsize,new = xsize + 2dinflation

ysize,new = ysize + 2dinflation

The vertices of the inflated beams are then computed and

objects representing these structural members are created, as

described in Section II-C.

Beams are not inflated in the z-direction, as this would

require a computationally more intensive computation of

NP and would not improve the quality of paths. Thus, one

special case of concern is that of a cantilever beam. Because

such beams are uncommon in the truss structures of interest,

one can manually extend these elements when defining the

structure in order to prevent the resulting path from coming

too close to the cantilever beam.

III. PATH PLANNING ALGORITHM

Once the structure is inflated, the configuration space is

divided into free and occupied regions. This is the basis

for our path planning algorithm, which is described in this

section. First a roadmap with deterministically computed

NPs is built. Afterwards, this roadmap is searched for a path

in an iterative process of lazy path planning [1]. In each

iteration an A∗ algorithm finds a path. This path is then

checked for collisions, and the roadmap is updated. This is

repeated until a collision free path is found.

A. Computing a Roadmap

NPs are computed relative to the joints connecting beams;

only active joints and beams are considered in this step. The

essential idea is to identify the “corner” between intersecting

beams and to set NPs at both sides of this corner as shown

in Fig. 3a.

Note that if a beam is rotated about its centerline, NPs

do not need to lie on the surface of the inflated structure;

see Fig. 3b. This is in contrast to visibility graphs, for

which waypoints always lie on the surface of an obstacle.

Another special case, that of abutted beams with differing

cross-sections, as shown in Fig. 3c, is discussed shortly.

The mathematical computation of NPs is described in the

Appendix.

After computing all NPs for each pair of active beams at

each active joint, a collision check is performed to determine

if any NP lies inside the inflated structure. Points inside the

structure are omitted from the roadmap. Fig. 4 illustrates the

resulting NPs for an example joint with four beams.

In addition to the NPs, the start and goal points for which

a connecting path must be found are included as nodes in

the roadmap.

Fig. 4: NPs for a joint with multiple beams.

B. Searching for a Path

The final task for the algorithm is to find a path from the

start to the goal. Our objective is to minimize distance trav-

eled rather than to reduce risk, energy, or time, although one

could easily accommodate alternative optimization criteria.

(a) Right-angled beams. (b) Rotated beams. (c) Beams in the same direction.

Fig. 3: Navigation Point (NP) examples for different combinations of beams.



The initial roadmap is a complete graph. In searching

this roadmap for a minimum-distance path, we adopt a lazy
approach [1]: no collision checks are performed for the

initial roadmap. Rather, every edge connecting two nodes of

the roadmap is assumed to be feasible. The weights of the

edges are initialized with the Euclidean distances between

the nodes.

Based on the initial roadmap an iterative process of finding

the path begins. In every iteration the roadmap is searched

for the shortest path from start to goal by applying an A∗

algorithm [5]. Edges which are part of the path are then

checked for collisions and deleted from the roadmap if they

result in a collision with the structure. The next iteration uses

the updated roadmap to obtain a path. The process ends when

a collision-free path is found.

IV. SIMULATIONS

This section describes simulation results for a half-span

of the George P. Coleman Memorial Bridge located in York-

town, VA in the United States; see Fig. 5. All simulations

were conducted on a computer with an Intel Core i7-6500U

2,5GHz processor running Windows 10. The algorithm was

implemented in Matlab.

A. Model of the George P. Coleman Memorial Bridge

The Coleman Bridge exhibits a repeating pattern of struc-

tural assemblies so, for path planning purposes, it is not

necessary to model the entire structure. The red box in Fig. 5

indicates the assembly that was modeled, as shown in Fig. 6.

In practical applications, the model would be generated

from detailed construction plans. For the example considered

here, a construction plan was unavailable, so the model was

generated using publicly available imagery along with a few

measurements obtained directly during field experiments.

The model comprises 33 active joints, 18 inactive joints,

104 active beams, and 4 inactive beams. The joints at the x-

values −11000 and 66000 are inactive joints, so no NPs are

set there. Further, the pillar, the deck, and the catwalks are

Fig. 5: George P. Coleman Memorial Bridge.

Fig. 6: Coleman Bridge model with a computed path in red.

modeled using inactive joints and inactive beams. Despite

this rather simplistic modeling of the assembly, the repre-

sentation enables accurate planning of collision-free paths

through the structure.

B. Results

We ran simulations with inflation sizes ranging from 2 mm

to 2000 mm. For larger inflation sizes, the cross-bracing

elements contained within the span create a virtual solid wall

in the model, so that path planning becomes infeasible. The

results are averaged over 50 random runs for each inflation

size and are summarized in Table I. In the table, the proposed

algorithm is referred to as the deterministic roadmap (DRM)

algorithm. For the structure of the Coleman Bridge, 694 NPs

are automatically computed. An example of a path that was

planned between two manually selected points can be seen

in Fig. 6. The path uses 4 NPs as waypoints to connect the

start and the goal. The computation took 158 s.

The distribution of computation time among the steps of

the algorithm is shown in Fig. 7. This distribution is averaged

among all the simulations that were conducted using the

DRM algorithm. Setting up the structure and computing the

NPs accoutns for a small fraction of the total computation

time. Most of the time (77.7%) is consumed by the A∗

algorithm searching the roadmap. Checking for collisions is

the second costliest activity, accounting for 18.9% of the total

runtime. Abandoning the lazy approach in order to reduce the

number of A∗ runs to one would significantly increase the

number of collision checks. For simpler paths, in particular,

this basic A∗ approach is far more time consuming than the

lazy approach we propose.

The algorithm runtime is plotted versus inflation size as

the blue trace in Fig. 8. With increasing inflation size, the

path computation generally takes longer. Predictions of the

runtime cannot be made, however, as these depend strongly

on the position of the start and the goal.

To evaluate the performance of the proposed algorithm

we compare with a PRM approach, a commonly used path

planning method. In our implementation of the PRM ap-

proach, NPs are randomly defined throughout the structure.

A total of 3000 NPs were defined, in order to balance the

Fig. 7: Time distribution among the steps of the algorithm,

averaged above inflation sizes between 2 mm and 2000 mm.



TABLE I: Results of the path planning algorithm for different inflation sizes dinflation

Inflation Size dinflation [mm] 2 250 500 750 1000 1500 2000
Computation Time DRM [s] 1.9 2.6 19.7 24.7 80.1 87.3 122.3
Path Length DRM [m] 22 23 26 25 28 25 23
Computation Time PRM [s] 8.1 9.8 109.2 634.9 1120.1 - -
Path Length PRM [m] 22 23 26 25 29 - -

desire for low computation times with the need to negotiate

narrow passages. The results from the PRM approach are

also listed in Table I. The PRM algorithm’s runtime is

indicated by the red trace in Fig. 8. The PRM method clearly

required significantly more computation time, especially for

large inflation sizes; for this reason, the method was only

tested for inflation sizes up to 1000 mm. The increase in

computation time with inflation size is due to the increasingly

confined spaces within the truss and the correspondingly

higher proportion of unfeasible edges in the probabilistic

roadmap. By comparison, the proportion of unfeasible edges

in the deterministic roadmap only changes slightly.

The lengths of the paths generated by the DRM and

PRM algorithms are quite comparable and there is no clear

dependency of path length on inflation size. On the other

hand, the path length depends strongly on the randomly

selected start and end points for the 50 runs.

During the simulations we further observed that the deter-

ministically computed NPs produce relatively shorter paths

when the start and points are close to a joint. Whenever

a beam obstructs a candidate path, this beam can only

be circumnavigated at a joint, requiring additional transit

distance that is reflected in the total path length.

We note that a roadmap which was generated for a

previous inspection can be saved and re-used for any subse-

quent planning task, regardless of the start and goal points,

resulting in computational savings.

V. CONCLUSIONS

There is increasing interest in methods for robotic in-

frastructure inspection with the aim of lowering the risk

to human inspectors. We have considered the problem of

path planning for a small, multirotor UAS inspecting a truss

bridge. The proposed algorithm efficiently computes a path

through a truss bridge structure from a start point to a goal

point. To support path planning, a method was developed to

represent the structure in a way that ensures the resulting

paths allow for the vehicle’s physical dimensions as well as

Fig. 8: Runtime of the DRM algorithm over inflation size.

position disturbances and uncertainty. The method represents

each structural member of the bridge as a a cuboid, referred

to as a beam, which completely contains the member. Points

where beams are connected are called joints. Given the

necessary parameters, such as joint locations and beam

dimensions, a computational representation of the structure

is constructed and a set of deterministic navigation points

(NPs) are computed around the joints. These NPs are used

to define a roadmap. It is assumed that any edge connecting

the nodes in this graph is a feasible path segment, that is, a

segment which does not intersect the structure. An iterative

process of graph search, using the A∗ algorithm and collision

checking, then determines a feasible path.

Simulations performed for an actual bridge span illustrate

the functionality of the algorithm and a comparison with a

PRM approach indicates its relative efficiency. Specifically,

for the scenario considered, the proposed algorithm com-

puted paths of similar path length in significantly less time

than the PRM approach.

In future work, we plan to extend the algorithm to plan

complete inspection paths that visit a sequence of user-

specified inspection points, corresponding to desired vantage

points for structural elements requiring inspection.

APPENDIX

The mathematical computation of NPs is based on two

beams connected at a joint. To compute all NPs for a given

structure, the computation is performed for every active joint

and for every combination of two active beams at the joint.

In the first step, the plane defined by the centerlines of

the two intersecting beams is computed. This plane is also

defined by the position of the current joint pjoint and the

plane’s normal vector nplane, obtained in (8). The vectors ŵb1

wb2

Beam 1Beam 2

ub2

ub1

wb1

current Joint

pintllong1 llong2

llat1

Fig. 9: Vectors and variables for the computation of NPs:

Plane cutting the two beams with variables for computing

the intersection point pint.



and ŵb2 represent the direction of the beams’ centerlines and

point away from the current joint. The direction ŵb is equal

to the z-axis ẑb of the beam’s frame if the current joint is

the beam’s start joint and equal to −ẑb if the current joint

is the beam’s end joint. Fig. 9 shows the connection of two

beams viewed from the side. The vectors and lengths used

for the computation are marked.

Next, the vectors ûb1 and ûb2 in Fig. 9 are obtained:

ûb1 = ŵb1 × n̂plane (6)

ûb2 = ŵb2 × n̂plane (7)

where

nplane = ŵb1 × ŵb2 (8)

If their dot product with ŵ from the other beam is negative,

the vectors obtained from (6) and (7) must be inverted to

ensure that ûb1 and ûb2 point in the direction shown in Fig. 9.

To obtain the point pint where the two beams intersect, the

lateral and longitudinal lengths llat1, llong1, llat2, and llong2 from

Fig. 9 must be found. To do so, the lateral lengths llat1 and llat2

are first computed and then a linear equation is solved for

llong1 and llong2.

The length llat of a beam is defined as the distance of a

tangent, which is perpendicular to the search direction ûb

and the beam direction ŵb. This is shown in Fig. 10. In (9)

the search direction ûb is decomposed into the vectors x̂b

and ŷb which are the frame vectors of the beam’s frame:

ûb = ax̂b + bŷb (9)

The signs of the scaling coefficients a and b determine the

direction of the next vertex:

dvertex = sgn(a)x̂b

(xsize

2
+ sgn(a)xoffset

)

+ sgn(b)ŷb

(ysize

2
+ sgn(b)yoffset

)
(10)

The length llat is then

llat = ‖dvertex‖ cos (β) = dvertex · ûb (11)

The longitudinal lengths llong1 and llong2 are computed from

llat1ûb1 + llong1ŵb1 = llat2ûb2 + llong2ŵb2 (12)

ubyb

xb

llat

dvertex

ysize

xsize

xoffset

yoffset

Fig. 10: Vectors and variables for the computation of NPs:

Cross-sectional area of a beam and variables for the compu-

tation of the extension in direction ub.

After solving this linear equation, the intersection point is

pint = pjoint + llat1ûb1 + llong1ŵb1 (13)

Usually two NPs are set for every pair of beams. The NPs

are set on the line of intersection which is defined by the

intersection point pint and the plane’s normal vector n̂plane.

The position along the line is chosen so that the NPs lie on

the sides of the beams. This enables to plan paths along the

beams. Therefore, the NPs are set based on the maximal ex-

tension of the beams in the two directions n̂plane and −n̂plane.

These extensions are denoted as lside1,n and lside1,-n for the

first beam and lside2,n and lside2,-n for the second beam and

again determine the distance of a tangent. The extensions are

obtained in the same way as llat but this time in the search-

direction n̂plane and −n̂plane. The NPs are then given by

pNP1 = pint + n̂plane max {lside1,n, lside2,n} (14)

pNP2 = pint − n̂plane max {lside1,-n, lside2,-n} (15)

If the two beams are aligned, their centerlines do not define

a unique plane. In this case, four NPs are set at the outer

edges of the beams, as shown in Fig. 3c.

In the first step, the extensions of the beams are obtained

by searching both beams for the tangent distance in the

directions x̂b1, ŷb1, −x̂b1, and −ŷb1 by the above described

method. The vectors x̂b1 and ŷb1 are the frame vectors of the

first beam. Afterwards, the maximum values of both beams

are determined for each of the four directions and the NPs

can easily be computed.

ACKNOWLEDGMENT

The authors gratefully acknowledge travel support from

Virginia Tech’s Institute for Critical Technology and Applied

Science and from the Center for Unmanned Aircraft Systems

under NSF Grant Nos. IIP-1539975 and CNS-1650465.

REFERENCES

[1] R. Bohlin and L. E. Kavraki. Path Planning Using Lazy PRM. In Int.
Conf. Robotics and Automation (ICRA), volume 1, pages 521–528,
2000.

[2] P. Corke. Robotics, Vision and Control: Fundamental Algorithms in
MATLAB, volume 73. Springer, 2011.

[3] E. E. Hartquist, J.P. Menon, K. Suresh, H. B. Voelcker, and J. Zagajac.
A computing strategy for applications involving offsets, sweeps, and
Minkowski operations. Computer-Aided Design, 31(3):175–183, 1999.

[4] H. Hexmoor. Essential principles for autonomous robotics. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 7(2), 2013.

[5] S. M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.
[6] A. Mazumdar and H. H. Asada. Mag-foot: A Steel Bridge Inspection

Robot. In Int. Conf. Intelligent Robots and Systems (IROS), pages
1691–1696, 2009.

[7] N. H. Pham and H. M. La. Design and implementation of an
autonomous robot for steel bridge inspection. In Allerton Conf.
Communication, Control, and Computing, pages 556–562, 2016.

[8] P. H. Pignon, T. Hasegawa, and J.P. Laumond. Optimal obstacle
growing in motion planning for mobile robots. In Int. Conf. Intelligent
Robots and Systems (IROS), pages 602–607, 1991.

[9] R. Wang and Y. Kawamura. Development of climbing robot for
steel bridge inspection. Industrial Robot: An International Journal,
43(4):429–447, 2016.

[10] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia. Survey of robot
3D path planning algorithms. J. Control Science and Engineering,
2016:5, 2016.


